Role of calcium-calmodulin-dependent protein kinase II in modulation of sensorimotor synapses in Aplysia.
نویسندگان
چکیده
The Ca2+-calmodulin-dependent protein kinase II (CaMKII) inhibitor, [1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne) (KN-62), was used to investigate the role of CaMKII in synaptic transmission and serotonin (5-HT)-induced facilitation in Aplysia. Application of KN-62 (10 microM) by itself increased the amplitude of excitatory postsynaptic potentials (EPSPs) at sensorimotor synapses in pleural-pedal ganglia. Moreover, in the presence of KN-62, 5-HT-induced short-term facilitation was attenuated. Application of KN-62 by itself slightly increased the duration of action potentials in isolated sensory neuron somata but did not block spike broadening produced by 5-HT. KN-62 had no effect on excitability of isolated sensory neuron somata nor did it block 5-HT-induced enhancement of excitability. These results indicate that the attenuation of short-term facilitation by KN-62 is not due to modulation of the membrane currents contributing to 5-HT-induced spike broadening or enhancement of excitability. Rather, these data are consistent with the hypothesis that CaMKII contributes to the regulation of sensorimotor connections and that it has a role in spike-duration-independent processes contributing to short-term facilitation.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملGene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal
Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...
متن کاملCa-Independent Protein Kinase C Apl II Mediates the Serotonin- Induced Facilitation at Depressed Aplysia Sensorimotor Synapses
At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC isoforms, the Ca-dependent PKC Apl I ...
متن کاملCa2+-independent protein kinase C Apl II mediates the serotonin-induced facilitation at depressed aplysia sensorimotor synapses.
At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC isoforms, the Ca(2+)-dependent PKC Ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 1 شماره
صفحات -
تاریخ انتشار 1997